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New solutions of the Yang—Baxter equation based on root of 1
representations of the para-Bose superalgebr&/,[osp(1/2)]

T D Palevf and N | Stoilovg§
International Centre for Theoretical Physics, 34100 Trieste, Italy

Received 3 August 1995

Abstract. New solutions of the quantum Yang—Baxter equation, depending in general on three
arbitrary parameters, are written down. They are based on the root of unity representations
of the quantum orthosymplectic superalgelig[osp(1/2)], which were found recently.
Representations of the braid groly, are defined within anyth tensorial power of root-

of-1 U,[osp(1/2)] modules.

1. Introduction

In the present paper we write down new solutions of the quantum Yang—Baxter equation
(QvBE), associated with root of unity representations of the quantum orthosymplectic
superalgebralU,[osp(1/2)], which we have recently constructed [1]. All such
representations are with a highest and a lowest weight. gHoeing a 4 root of 1 with

k = 3,5,7,..., there exists a continuous class lbfdimensional representations. The
solutions of theQyBE we find depend in general on three continuous parameters.

The general interest for studying solutions of the quantum Yang-Baxter equation is
inspired from the various applications of the latter in conformal field theory [2, 3], quantum
integrable models [4, 5] and knot theory [6—8]. Our motivation for the present investigation
is of somewhat different nature. It originates from the close connection between the
representations of the orthosymplectic superalgebras and the quantum statistics [9, 10], more
precisely, the parastatistics [11].

It is perhaps worth commenting on the last point in greater detail. To this end consider as
an example the Hopf algebig,[osp(1/2n)], the quantized universal enveloping algebra of
the orthosymplectic Lie superalgelwsp(1/2n). The quantization of the latter in terms of
its Chevalley generators is well known [12-17]. An alternative definitiotvdbsp(1/2n)]
has recently been given [18-21] in terms of pre-oscillator generaférs K; = g,

i =1,...,n. The relation to the quantum statistics stems from the observation that the
operatorsaii, i =1,...,n can be identified with deformed para-Bose operators. Moreover,
it turns out that the oscillator (or Weyl) superalgela(n) generated by pairs of deformed
Bose operators [22-25] is a factor algebralgfosp(1/2n)] [26,27] and (depending on

the precise definition of the pre-oscillator generators) a morphisiii, f¥sp(1/2n)] onto

W, (n) is given essentially by a replacement of the deformed para-Bose operators with
deformed Bose operators. Therefore, despite the fact that the oscillator aiggbra
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is not a Hopf algebra, one can define &matrix associated withW, (n) simply by
considering the Fock representation Wf (n) also as a representation of,[osp(1/2n)].

To this end one has to express thg[osp(1/2n)] universal R-matrix in terms of pre-
oscillator generators and subsequently replace them with deformed Bose operators. The
related matrice®,, Riz, Rz3, Which are functions on pairs of deformed Bose operators

and the corresponding number operators, provide a ‘bosonic’ solution Qfrse Certainly

one can try to carry out the above programme in a more general framework, considering
other representations of the pre-oscillator generators. This would correspond to finding
representations of the deformed para-Bose operators. The problem, however, is not simple;
it has not been yet been solved even in the non-deformed case.

The present paper is a small step towards the realization of the above programme.
Here we deal with the superalgebig[osp(1/2)]. Nevertheless, even in this simple
case one arrives at interesting conclusions. It turns out, for instance, that apart from
the representations corresponding to both deformed and non-deformed parabosons (and, in
particular, bosons) one finds a (root of 1) representation wittbeing the usual fermions
[28], i.e. the fermions are deformed parabosons. Thus, the bosons and the fermions appear
as different irreps of one and the same quantized superalgebra, népjely (1/2)]. As
an example we write down the corresponding four-dimensional (non-diag@®Aadatrix,
which leads to a ‘fermionic’ solution of theyBE.

The new solutions of theYBE will be based on the representations of the pre-oscillator
generators:*, K = ¢" in (deformed para-Bose) Fock spaces. We pay special attention
to the case when the deformation parametds a root of unity, which leads to finite-
dimensional Fock spaces.

Forn > 1 the pre-oscillator generators of,[osp(1/2n)] are very different from its
Chevalley generators. In case= 1 however the creation and the annihilation (deformed
para-Bose) operators", a~ can be identified with the positive and the negative root vectors
e and f of U,[osp(1/2)], respectively. Therefore the results to follow could have been
given entirely in terms of the canonical terminology and notationUigfosp(1/2)]. We
prefer, however, to stay close to the notation of the pre-oscillator generators, speaking about
creation and annihilation operators instead of Chevalley generators, (deformed) Fock spaces
instead of Verma modules, etc. In order to underline ttiglosp(1/2)] is (essentially)
generated by deformed para-Bose operators we call it a (deformed) para-Bose superalgebra.

The paper is organized as follows. In section 2 we recall the definition of the deformed
para-Bose superalgebra and its Fock irreps widn a root of unity. The form of the
transformation relations is new and more compact, compared with those given in [1].
In section 3 new solutions of theyBE are constructed. The situation here is rather
peculiar. We first prove that wheaq is a root of unity U,[osp(1/2)] is in general not
almost cocommutative. Nevertheless, the expression of the (generic) uniRersatrix
turns to be well defined within all of our representation spaces, which leads to solutions of
the QYBE. In addition theR-matrix allows us to define representations of the braid group
By in the Nth tensorial power of any of th&,[osp(1/2)] Fock modules.

Throughout we use the following abbreviations and notatidnall complex numbers;

Z, all integers;Z., all non-negative integerg:, = {0, 1}; [A, B] = AB — BA, {A, B} =
AB + BA; U, = Uylosp(1/2)].

2. The para-Bose algebraJ,[osp(1/2)] and its Fock irreps

Here we summarize the results of [1]. However, the form of the expressions (2.5), (2.7)—
(2.9), describing the transformations of the Fock spaces, is new. It is more compact than
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the corresponding relations in [1].

The superalgebrél, = U,[osp(1/2)], ¢ € C\{0, £1} has three generatoss, a~, H,
satisfying the defining relations:
N q" —q7"

[H,a*] = £24% {at,a"} = . (2.1)
q9—q

H is an even generatos;” are odd. As; — 1 H = {a*, a~} and equations (2.1) reduce to
the defining relations of the non-deformed para-Bose operators §14] { = + or + 1):

[{a®, a"), a] = (€ = ma® + (e — E)a". (2.2)

The Hopf algebra structure o/, can be defined in different ways [17]. For the
comultiplication we set

AH)=HQ®1+1®H Aa) =a"®1+¢ "Qa" Aa) =a @q7+1®a".
(2.3)

Passing to the representations Gj we note that the finite-dimensional irreps of
U,losp(1/2)] at genericg were constructed in [29,30]. Some root of unity highest weight
irreps were also obtained in [30]; both highest weight and cyclic representations were studied
in [31-34].

A (deformed) Fock spacé(p) is defined in the usual way for the parastatistics [11]:
for any complexp (which is an analogue of the order of the parastatistics) one postulates
the existence of a vacuum vect@) € F(p) so thata—|0) = 0 and H|0) = p|0). From
now on we shall denote by[ﬂf and H, the representatives aft andH in F(p). The latter
is an infinite-dimensional linear space with a bgais= (a;)”|0), nez,.

Setting

qn+x _ (_1)nq7n7x

n;x}, = 2.4
i <l q—(-Drgt @4
one can write the transformation of the basis as follows:
Hyln) = (2n+p)ln) @, In) ={n;Olyfn =L plyln —1)  afln)=In+1).

(2.5)

At genericq the spaceF (p) is infinite-dimensional. It is a simple(irreducible)U, module
if p is not a negative even number [28] (which we always assume). The gphace- 1)
is the Fock space of deformed Bose operators [22—-25]. Withih) the pre-oscillator
operators satisfy the relations

ayai —q*?ata; = ¢ whereN = (Hy — 1) is the number operator ~ (2.6)

In the root of unity case (p) is indecomposible if and only if = €2 % for everym, k € Z
such thatg ¢ {1, £i}. The factor-space of (p) with respect to the maximal invariant
subspace is an irreducible module, containing the vacuum vétor

The algebrasU, corresponding to all possible values mf and k contain several
isomorphic copies. Without loss of generality we restrictand k to values, which we
call admissible, namely (i = 2,3,...; (i) m € {1,2,...,k — 1}; (iii) m andk are
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relatively co-prime. From now on we considgr= €2 % to be only an admissible root of
1.

The irreducibleU, modules withg being root of 1 are finite-dimensional. Denote by
WE(p) C F(p) an L + 1-dimensional representation space with a biis |1), ..., |L).
Its transformations under the action of tbig generators read

Hpln) = (2n + p)in)

a, n) = {n; O}y{n —1; plyIn — 1)
n<L. (2.7)
a;'|L) =0

a;ln) =|n+1)
We distinguish two classes of algebras, each one containing three groups of representations:

Class l(k —m =odd : (l.a)L =2k —1if p # integet

(ILb) L = p(k — 1)(mod %) if p = integet (2.8)
(le)L=2k—1

Class ll(k,m=o0dd) : (ll.a)L=k—1if p#even
(I.Lb) L = (k — p)(modk) if p = even (2.9)
(le) L=k -1

The cases (l.a), (I.b), (Il.a) and (ll.b) correspond to irreducible representations, whereas

in (I.c) ((Il.c)) the representation is indecomposiblepif= integer (p = even). The 2-

dimensional modules corresponding to (I.c) were described in [32], where in particular it

was shown how those of them correspondingcte- odd andm = even can be modified

so that they carry cyclic representations. One has to keep in mind, however, that at certain

values of p these modules are no longer irreducible, but are indecomposible. In fact each

simple moduleW £ (p) from (1.b) with L = p(k—1)(mod %) is a factor-module oW %~1(p)

from (I.c) with respect to its maximal invariant subspace. To the best of our knowledge the

representations from classes (I.b) and Il have not so far been described in the literature.
One can always assume<ORe(p) < 4k, since the representations withoutside that

interval are equivalent to representations wjtlobeying the above inequality; i is odd

andm is even one can further setORe(p) < 2k if m = 2(mod 4 and O< Re(p) < k if

m = 4(mod 4.

3. R-matrices and new solutions of theQYBE

One way for constructing®-matrices and hence solutions of thesEe is based on the use of
the universalR-matrix of a quasitriangular Hopf algebtatogether with the representations
of U.

The universalR-matrix for U, was written down in [29, 30]. Here we use the expression
as given in [17], which in our notation read

R = Z(_l)%n(n+l)((qu)_7_q2)|[(a+)n ® (a—)n]q%H(@H (31)
n>0 —q°°
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Whereq = 61_11 (e =1~- an)/(l —a), (M)y' = D)4y ... (n),-

If p1 andp, are two representations 0f, defined inV; andV5, then the relate®-matrix
IS R(p1, p2) = (p1 ® p2)R € End(V1 ® V>).

In the root of 1 cases, however, the above construction generally fails, because for certain
admissibleg U, is no longer almost cocommutative. The proof is essentially the same as the
one given by Arnaudon fot/,[s/(2)] [35]. It is based on the observation thdf contains
a larger centre generated from its Casimir operator and the additional central elements
% = (a*)* andz = (K)%* [30,31]. If p is an irrep ofU, in V, thenp(E*) = p(x*)1y,

(%) = p(2)1y, where ¥ is the unit operator iV andp(x*), p(z) € C.

We proceed to show that the universgimatrix does not exist for a subclass of |,
corresponding to all algebras with= odd andm = even. LetN < 2k for k — m = odd
andN < k for k,m = odd. Ifg = €2% and AB + ¢?BA = 0 then the following general
identity holds:

A+ BV —XN: —"<N—">{N} A"BY "

( ) —nzoq nl,

{N} B (N},! (3.2)
nj, {n}g"YN — n},!

{n}q — qn _ (_1)11q—n.

Applying (3.2) forN =2k —1,A=1® a andB =a~ ® K, for all class | algebras we
obtain:

ART)=1Qi +i ®2 APE) =% ®1+:Q®%. (3.3)

In (3.3) A°?P = g A is the opposite comultiplications is a superpermutatiom; (a ® b) =
(—1ydes@des®p g, Assume now thal/, is almost cocommutative, namely that there exists
an invertible elemenR from (the completion of{U, ® U,, such thatRA(a) = A°®(a)R

for anya € U,. On the tensor product of two irreps and p, in vy and V, for a = X~
one would have:

(01 ® P2)(R)(p1 ® p2)(A(X7)) = (p1 ® p2)(APE 7)) (p1 ® p2)(R).  (3.4)

With both sides of (3.4) acting on an arbitrary vect& € V1 ® V,, one gets

{p1(x7) + p1(D) 2(xHHY) = {p2(x7) + p2(z)p1(x)H}|Y)

where|Y) = (p1 ® p2)(R)|X). Therefore

p2(x7) + p2(2)p1(x7) = p1(x7) + p1(2) p2(x7). (3.5)

The central elements™ and? can take arbitrary values on the cyclic irreps of the algebras
with £ = odd andm = even [34], i.e. in this cas@i1(x7), p2(x7), p1(z) and pa(z) are
arbitrary numbers, which contradicts (3.5). Therefore the univeksalatrix cannot exist

for these algebras. Note, however, that equation (3.5) does not contradict the representations
(2.8), since for any of themp(x*) = 0. Therefore, following Rosso [36], one can try to
produce an almost univers&-matrix on the quotienffq = Uylosp(1/2)]/(&* = 0).
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Equation (3.5) holds for the subclass of the class | algebras, corresponding éwen
andm = odd. The known irreps for this subclass are only those listed in (2.8). The latter do
not contradict (3.5), sincé* act as zero operators within each clagg tmodule. Therefore
the question as to whether the univergamatrix exists for the algebras with= even and
m = odd is an open one. The same holds for all algebras from the class II. WithirLgach
module corresponding to (2.9) are zero operators. Our attempts to extend these modules
to carry cyclic representations were not successful. Moreover, equations (3.3), and hence
equations (3.5) are no longer true.

We see that the question about the existence of an univRrsatrix for the algebras
U, wheng is a root of 1 cannot be answered uniquely at present. Our claim is that the
R-matrix (3.1), considered as an element@‘ ® U,, is almost universal, namely it is
‘universal’ for all Fock representations (2.7)—(2.9): df*(p1) and p%2(p,) are any two
such representations, then the operator

RE2(py, pa) = (" (p1) ® p"2(p2))(R) © WEi(p1) ® W2 (p2) — Whi(p1) ® WE2(po)
(3.6)

satisfies the analogue of (3.4)

REME2(py, po) (0™ (p1) ® p™2(p2))(A(@)) = (p™(p1) ® p™2(p2))(A%®(a) R*12(py, po).
3.7)

The explicit action ofRE+L2(py, p,) on the basigly) ® |Io) of Wii(py) ® Wi2(p,) yields

min(Ly—I4,l2)

RLLLz(pl p2) (L) ® |l2) = q%(211+P1)(212+P2) Z (_1)%(n+211+1) (@—q)"
’ =0 (i’l)_qZ'

n—1
x [tz = i: 04y ll2 = 1= is palylla +n) @ ll2 — n). (3.8)
i=0

The proof of (3.7) is by a direct computation within eagh module Wt (p1) @ WE2(p,),
i.e. using the transformation relations (3.8).
The linear operators
RIF™(p1, p2), REA™ (p1, p3), R332 (p2, pa) in WErL2ls(py po pa)
= WH(p1) ® W' (p2) @ W™ (pa) (3.9)

which satisfy theQyse

RiZY (1, p2)RIZ ™ (p1, p2) R32 ™ (p2, p3) = Ry ™ (p2, pa) R1Z " (p1, p2) Ry ™ (p1, p2).
(3.10)

are defined on the basis as follows:

min(Ly—I1,12)

R} (pr. p2)(111) ® I12) ® |l3)) = g2 @itr@erd 3™ ()2t
n=0
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—n n—1
(?n;jz)! ,1]0{12 —i:0),{l2 = 1= is p2llla + 1) ® ll2 = n) ® |L3).
(3.11)
min(L1—I1,l3)
Ry (p1. pa) (1) ® l12) ® ) = g 2BxtP0 @iy 7 (g2
n=0
o 4 - " ﬁ{ls —i;0),{ls—i — L p3llla +n) Q |I2) @ |l — n).
() g2t g
(3.12)
min(La—Ip,13)
Ry (P2 pa)(1) ® |12) ® 1)) = g2 @HP@str0 7 (g3t
n=0
L@y 1{13 —i;0),{lz—i— 1 palllh) @ |l +n) ® |3 — n).
(n)—g2! i=0
(3.13)

The operators (3.9) can be expressed in terms ofRtmaatrix (3.8). To this end introduce
a superpermutation linear operat®y; : (|n1) ® |n2)) ® |n3)) = (—1)"2"3|n1) ® [n3)  |n2)).
Then

Ri3"(p1, p2) = R*F2(py, p2) @ 1
R{3"(p1, p3) = Paa(R*"*(p1, p3) ® 1) Pog (3.14)

R33"(p2, p3) = 1® R*>*2(pa, pa).

Depending on the choice of the representations (2.8) and (2.9), one oRtamagrices
of different dimensions, which may be parameter independent or can depend on one or two
free parameters.

If pl1(p1), pr2(p2) € (l.c), then RE+L2(py, p,) depends on two arbitrary complex
parameterg, and p,, dim(RLvL2(py, po)) = 4k%. TheseR-matrices were obtained in [32].
The expression (3.8) is somewhat more compact.

If pfi(p1), pl2(p2) € (l.c) R*L2(py, po) depends also on the arbitrary complex
parameters; and p,, but dim(R:L2(py, po)) = k2. This is a new class oR-matrices,
leading through (3.14) to new solutions of tkeBE, defined in ak3-dimensional space
Whuvl2ls(p, po. p3) with k = 3,5, 7, ... and depending on three arbitrary parameters.

In all other cases th&-matrices depend on less then two free parameters, which is due
to the case that for certain values @f, p, and p;s WivL2Ls(p,, ps, p3) contains invariant
subspaces. Those correspondingoto (p1), p“?(p2) € (L.b) or (ll.b) lead to constant
R-matrices and hence to constant solutions of@hee. Here are two examples.

Example 1 The representation (I.b) with=2, (m = 1) andp = 1 givesL = 1. From
(2.7) one concludes thatt are Fermi operators. In the bagi®) ® |0), |0) ® 1), |1) ®
[0}, |1) ® |1)} the ‘fermionic’ R-matrix reads

esim 0 0 0
0 esim 0 0
L1=1Lo,=1 _ — -
0 0 0 —ed”™

It contains no free parameters.



716 T D Palev aml N | Stoilova

Example 2 We consider the class Il algebfd, with the smallest possible value &f
namelyk = 3 (and hencen = 1), i.e.q = €7/°. There is a tree oR-matrices, related

to the different possible branches of the representations (ll.a, b, c). One such branch is, for
instance,R%?(p1, p2) — R?*1(p1,2) — R%(2,2). The rootR-matrix RL1=2L2=2(p,  p,)

is nine-dimensional and depends on two arbitrary parameteesd p,. In a matrix form
(ordering the basis lexicallyi) ® |j) < |k)®|l) if i <k orifi =k andj <) from (3.8)

one obtains

R**(p1, p2)
Agooo O 0 0 0 0 0 0 0
0 Apor O 0 0 0 0 0 0
0 0 Ao02.02 0 0 0 0 0 0
= 0 0 Aunoe O  Annn O 0 0 0 (3.16)
0 0 0 0 0 A1212 0 0 0
0 0 A0z O Axp1n O Ao O 0
0 0 0 0 0 Az112 0 Ao 0
O 0 0 0 0 0 0 0 Amx
with
A00.00 = eflziﬂplpz Aoror = e%ziﬂpl(l?2+2) Ao202 = eflzi”pl(p2+4)
A1010 = e (P1+2)p2 A= e (P1+2)(p2+2) Arp1p = @2 (P1+2)(p2+4)
Ap20 = elizirr(p1+4)pz Ay = e%ziﬂ(p1+4)(pz+2) Azpap = elizin(p1+4)(p2+4)
Argor = —2ietPi(r2+2 sin(gmp2) A1rop = —2ie P2t cos;m(p2 + 1))

Azg1y = 2jeT(P1+2)(p2+2) Sin(:—énpz)
Aggoz = —igi PP+ (2 sin(gm(2p2 + 1) — 1)
Ari1p= 2ie%2iﬂ(P1+2)(P2+4) Coi%ﬂ(Pz + 1)).

Setting p, = 2 and L, = 1 one obtains the next matrix from the branch, namely the six-
dimensionalR-matrix RL1=%12=1(p, p, = 2), which depends on the arbitrary parameter

p1:

eéinm 0 0 0 0 0
0 e%inpl 0 0 0 0
R2,1( 2) = 0 —iﬁeéi”l’l eéiﬂ(p1+2) 0 0 0
o=l o 0 0 Sin(pi+2) 0 0
0 0 0 i/3ebin (42 glin(m+d) 0
0 0 0 0 0 &im(p1+4)

(3.17)

R%*1(p1, 2) can be obtained from the root matrix (3.16) by crossing out its rows and columns
with numbers 3, 6 and 9 and settipg = 2.
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The last matrix from the branch correspondspto= p, =2 andL; = L, = 1. It is
a four-dimensional constarR-matrix, which can be obtained by crossing out the last two
rows and columns in (3.17) and settipg = 2:

g3l 0 0 0
0 el 0 0
RY(2,2) = ” ” 3.18
22 0 —iJ3e™ e3i7 0 (3.18)
0 0 0 —eil”

One can choose certainly other branches fromRhmatrix tree, obtaining in this way new
R-matrices of smaller dimensions, which are always submatrices of the root matrix (3.16).

Let us mention at the end, following Zhang [38], that tRematrix can be used also
in order to define representations of the braid gr@jpacting in anyNth tensorial power
of Fock spacesVZ(p), namely inWZ(p)®N. To this end setR:(p) = PRLE(p, p) €
End(WE(p) ® WL(p)), where P is the superpermutation operator Wi’ (p) ® WX (p).

It is straightforward to verify thatR:(p) is an U,losp(1/2)] intertwining operator in
WE(p) @ WE(p):

[RE(p), A@)] =0 YaceU,. (3.19)

Hence [38]o; € End(WE(p)®Y i=1,..., N —1, defined as

o; = 180D @ R (p) @ 18N —i-D (3.20)
gives a representation @&y, namely thesy, ..., oy_1 satisfy the defining relations faBy:
oioj =0jo; |i—jl>1 0i0i110; = 0;410;0j41. (3.21)

Hence (the representation of the braid gro#) is a subset of the set of all intertwining
operators inW = (p)®V.

4. Concluding remarks

We have found new solutions of the quantum Yang—Baxter equations, using essentially the
representations a¥,[osp(1/2)], which we have recently constructed. The solutions were
obtained formally from the ‘genericR-matrix (3.1), despite the fact that the latter does not
exist in root-of-1 cases. The more precise statement is that at values of the deformation
parametey = €27 with k = odd andm = evenU,[osp(1/2)] is not quasitriangular and,
furthermore, it is not almost cocommutative. In all other admissible cases the question
about the existence at is an open one.

The results we have announced in the present paper are more of a mathematical
nature. The very fact, however, that are deformed para-Bose operators (in some other
terminology, deformed supersingletons [39]) indicates already their relation to quantum
physics. In fact the representation with= 1 corresponds deformed to bosons [22-25].
The one-dimensional quantum oscillator based on such operators exhibits quite unusual
properties whery is a root of 1. In particular it leads to discretization of the spectrum of
the position and momentum operators, thus putting the phase space on a lattice [40]. It will
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be interesting to consider the same problem in the frame of the more general para-Bose
oscillator, considering all its (unitarizable) root-of-1 representations.

Various kinds of oscillators based on deformed parabosons have so far been discussed
in the literature (see [1] for references in this respect) without usually paying attention to
the underlying coalgebra structure. The arbitrary deformations may face serious problems,
however: if the underlying deformed para-Bose algebra is not a Hopf algebra (or at least an
associative algebra with a comultiplication, which is an algebra morphism), it is impossible
to define the tensor products of representations. The deformations of the parabosons
considered here are free of this disadvantage, since our deformed algebra is identical with
the Hopf algebral,[osp(1/2)]. Another positive feature of the Hopf algebra deformations
is the existence of aR-matrix within every Fock spac®’(p). The latter allows one to
define an action of the braid groupy within any Nth tensorial poweW . (p)®", which
commutes withU,[osp(1/2)]. This is a step towards the decompositionVsf (p)®" into
irreducibleU,[osp(1/2)] modules.

It will be interesting to generalize the present approach to the case of several, say,
n modes of pre-oscillator operators. To this end one has first to express the universal
U,losp(1/2n)] R-matrix in terms of deformed para-Bose operators and then consider root-
of-1 representations of them. A good candidate for such a representation is that of the
g-commuting deformed Bose operators, introduced recently in [20, 21], which permit only
root-of-1 (unitary) representations.
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